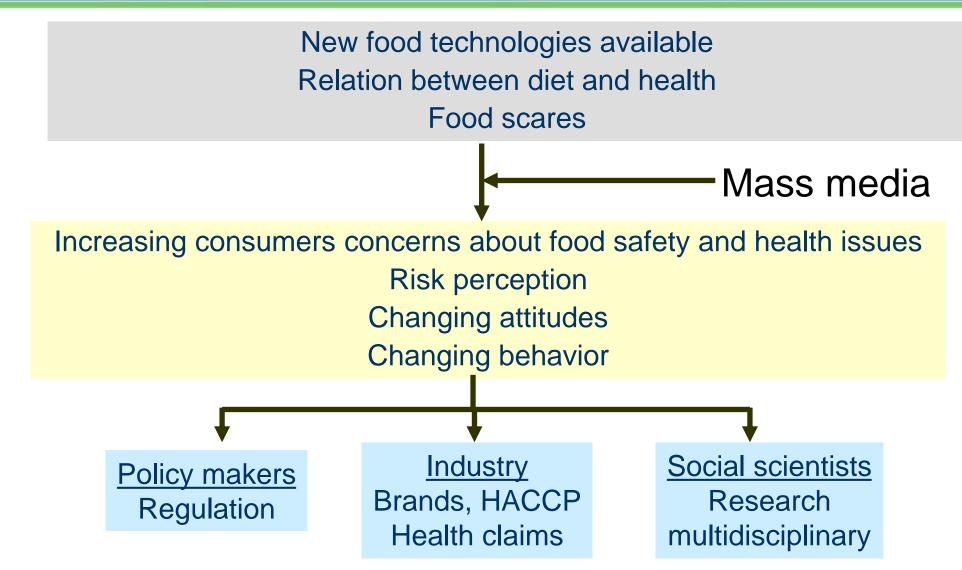


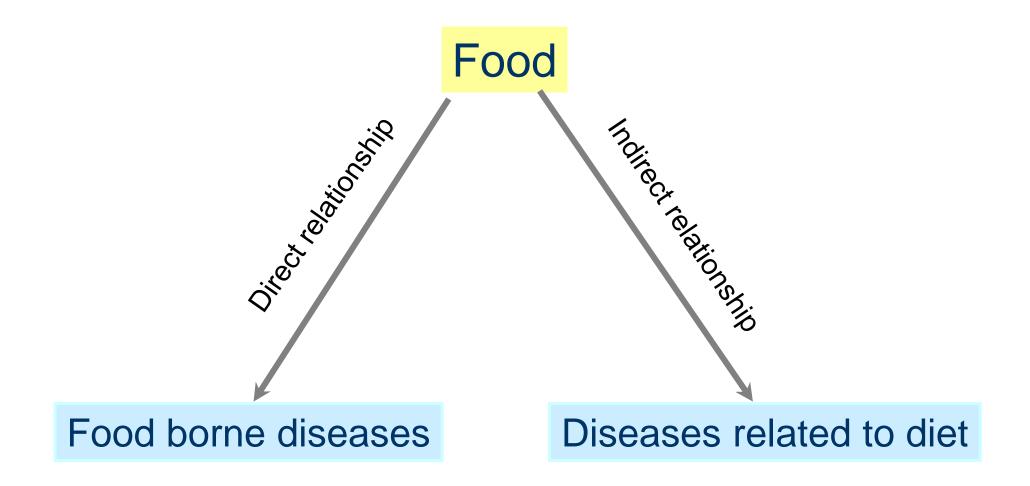


Parc Mediterrani de la Tecnologia Edifici ESAB Avinguda del Canal Olímpic 15 08860 Castelldefels


### MEASURING AND MANAGING CONSUMERS' RISK PERCEPTION TOWARDS FOOD RELATED ISSUES

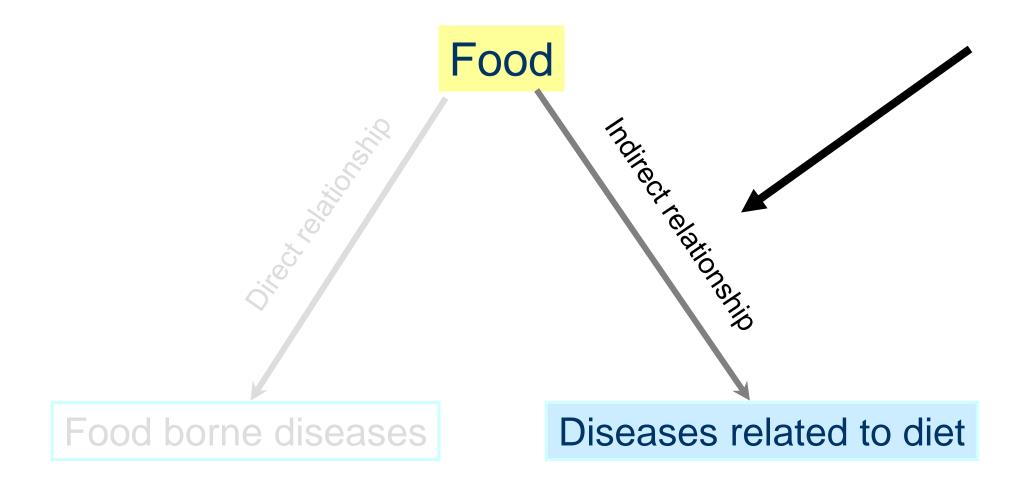
#### Wisdom Dogbe and José M. Gil

CREDA-UPC-IRTA Castelldefels (Barcelona)



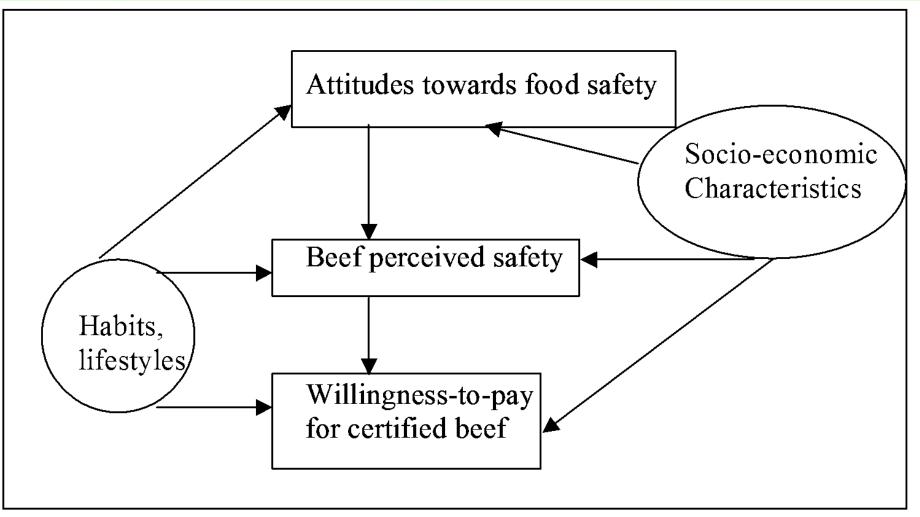






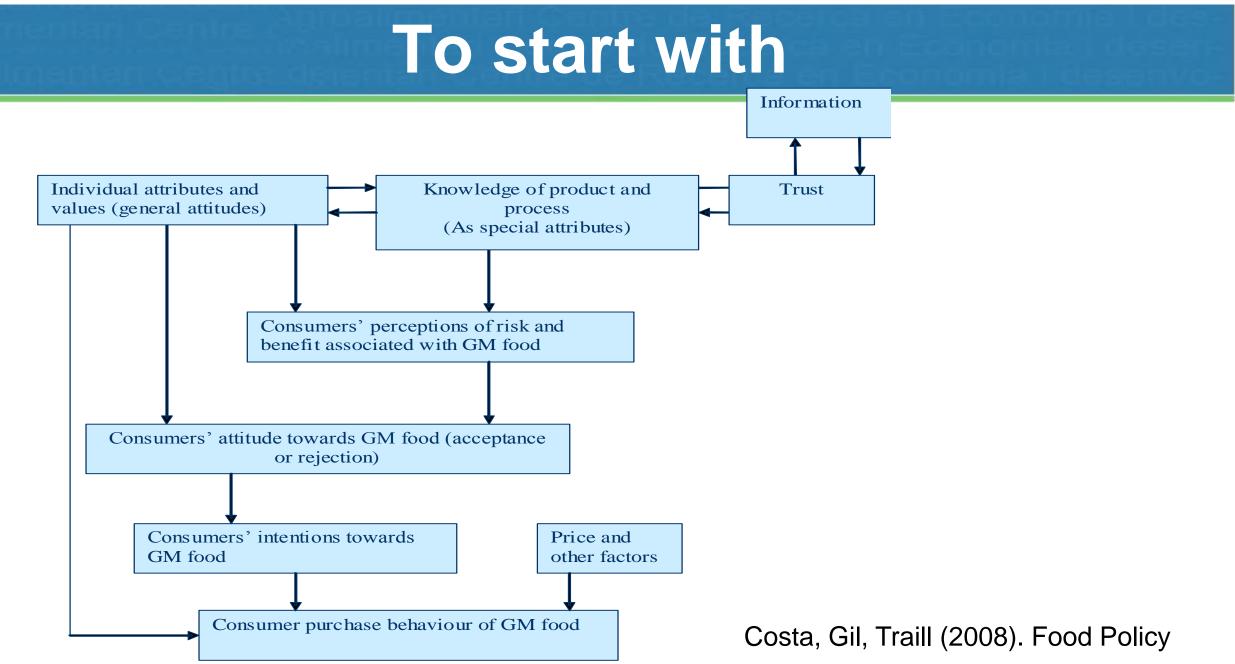











Angulo and Gil (2007). Food Quality and Preference











## **Outline of the presentation**

- Risk Perception & Risk Aversion
- Linking Risk Perception & Risk Attitudes
- Measuring Risk Attitudes: Simple Methods
- Expected Utility Framework
- Prospect Theory Framework
- Measuring Risk Attitudes: Complex Method
- Empirical Application
- Estimating Prospect Theory Parameters
- Preliminary Results 1
- Relating Risk Attitudes & BMI
- Preliminary results 2



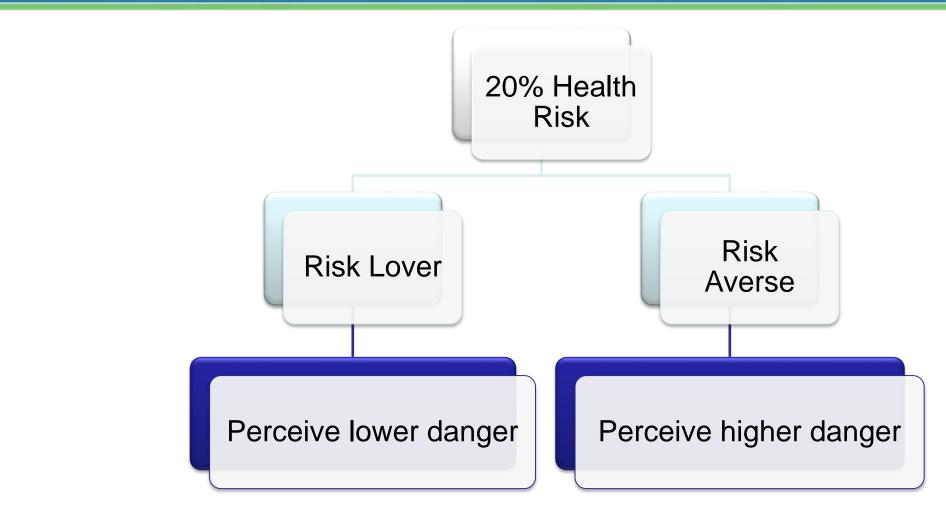


## **Risk Perception & Risk Aversion 1**

- In Business:
- A person's risk propensity influences evaluation of risky situation.
- Risk propensity may impact risk perception (Brockhaus 1980; Vlek and Stallen 1980).
- Risk propensity has an inverse effect on risk perception (Keil et al., 2000; Forlani et al. (2002).






## **Risk Perception & Risk Aversion 2**

- Food Safety
- Less risk averse consumers perceive food safety risk to be very low in case of an outbreak (Schroeder et al. 2017; Weller, Andrea and Caleb (2012).
- Consumption only reduces when the risk perception is relatively high
- Consequently, less risk averse people rarely reduce consumption





## **Linking Perception & Attitudes 1**







# Linking Perception & Attitudes 2

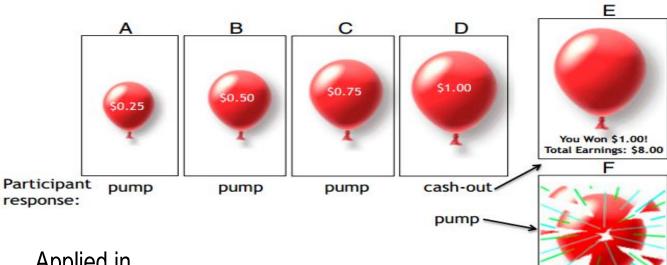
### So,

- Risk attitudes negatively affect risk perceptions
- Risk attitudes are inherent to consumers
- Risk perceptions are more conjectural (measurement is ad hoc and case specific) and depend on information, the technology itself, mass media or social networks and risk attitudes
- Other presentations on risk perception
- We focus on risk attitudes and, more specifically, how to measure them?



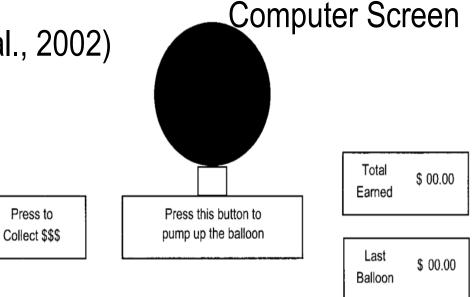


- Respondents give a global assessment of their willingness to take risks.
- ➤ Framing
  - "How do you see yourself: are you generally a person who is fully prepared to take risks or do you try to avoid taking risks"
- $\succ$  Respondents are assessed on the scale of 0 10:
  - $\geq$  0 => not at all willing to take risks
  - > 10 => very willing to take risks


(Dohmen et al., 2011)






Total Earnings: \$7.00

- **Experimental Methods Simple**
- 1. Balloon Analogue Risk Task (Lejuez et al., 2002)



Applied in

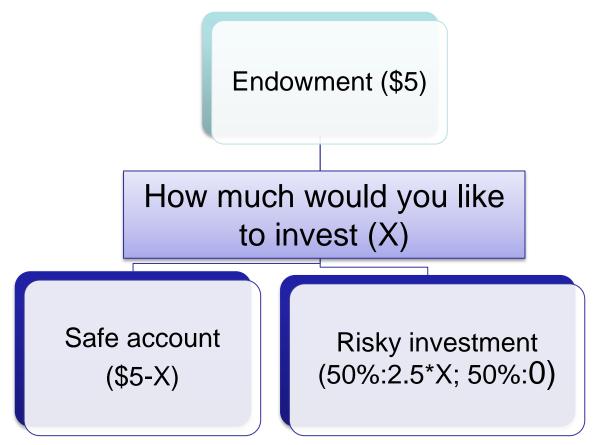
- Neuroscience (Fecteau et al., 2007)
- $\succ$  Drug addiction (Bornovalova et al., 2005) and
- Psychopathology (Hunt et al., 2005).



#### **WEAKNESS**

- It is not clear if risk preferences extend to other domains
- Requires a computer and multiple 13 trials to implement






| Healthy &    | 8          | very unlikely                                                                                      | unlikely                                                                                                                   | not sure |  | likely | very likely |  |  |
|--------------|------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------|--|--------|-------------|--|--|
| Safety       | items      | 1                                                                                                  | 2                                                                                                                          | 3        |  | 4      | 5           |  |  |
| Ethical      | 8<br>items | Simple to understand method Hanoch et al. (2006) used                                              |                                                                                                                            |          |  |        |             |  |  |
| Recreational | 8<br>items | Questionna                                                                                         | <ul> <li>Critics:</li> <li>Questionnaires are not incentivized:</li> <li>the DOSPERT to demonstrate the domain-</li> </ul> |          |  |        |             |  |  |
| Social       | 8<br>items | <ul> <li>Hence, elicited risk preferences<br/>may partially reflect an<br/>preferences.</li> </ul> |                                                                                                                            |          |  |        |             |  |  |
| Gambling     | 4<br>items | individual's true attitudes toward risk                                                            |                                                                                                                            |          |  |        |             |  |  |
| Investment   | 4<br>items | Preference (X) = a*Expected Benefit (X) + b*Perceived Risk (X) + c 14                              |                                                                                                                            |          |  |        |             |  |  |





#### **3.** The Gneezy and Potters method



- Used to elicit myopic loss aversion in the financial decisions among
  - students (Gneezy and Potters, 1997),
  - professional traders (Haigh and List, 2005)
- Compare gender differences in risk attitudes (Charness and Gneezy, 2012).
- Risk preferences of bridge players

#### **Critics**:

Does not distinguish between riskseeking and risk-neutral preferences

The Investment game risk-elicitation method: from certain to uncertain





#### 4. Eckel-Grossman Task

The Eckel and Grossman measure.

| Choice (50/50 Gamble) | Low payoff | High payoff | Expected return | Standard deviation | Implied CRRA range               |
|-----------------------|------------|-------------|-----------------|--------------------|----------------------------------|
| Gamble 1              | 28         | 28          | 28              | 0                  | 3.46 <i><r< i=""></r<></i>       |
| Gamble 2              | 24         | 36          | 30              | 6                  | 1.16 <r<3.46< td=""></r<3.46<>   |
| Gamble 3              | 20         | 44          | 32              | 12                 | 0.71 <r 1.16<="" <="" td=""></r> |
| Gamble 4              | 16         | 52          | 34              | 18                 | 0.50 <r<0.71< td=""></r<0.71<>   |
| Gamble 5              | 12         | 60          | 36              | 24                 | 0 <r<0.50< td=""></r<0.50<>      |
| Gamble 6              | 2          | 70          | 36              | 34                 | <i>R</i> < 0                     |

- Results correlated significantly with those elicited through the other methods (Reynaud and Couture, 2012)
- Produced significantly less noisy estimates of risk preferences more than complex (Dave et al., 2010)
- Relatively easy for individuals to understand

#### **Critics:**

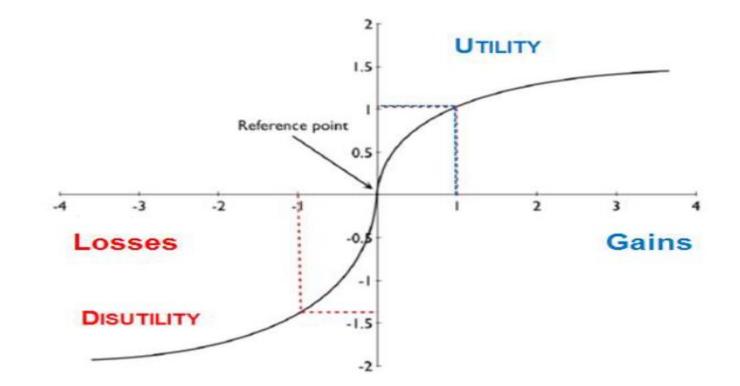
it cannot differentiate between different degrees of risk-seeking behaviour





## **Expected Utility**

- Preferences towards risky choices are represented by utility function (ordinal, not cardinal) U(a)
  - von Neumann Morgenstern utility function
- Decisions are made to maximize expected utility EU(a)
  - E is the expectation operator based on subjective probability distributions of a
- Independence assumption violated (assumption of linearity in probabilities may not hold).
- Risk preference characterized by expected utility (EU) assume that,
  - Risk aversion is the sole parameter for determining the curvature of the utility function.





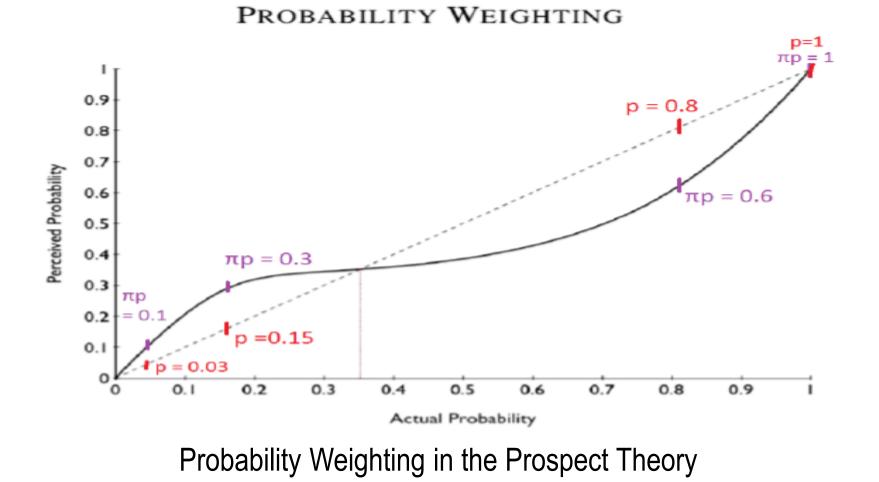

- In Prospect Theory (PT) losses are valued more heavily than gains
  - Presence of loss aversion
- PT postulate
  - -risk aversion for gains, concave utility function
  - -risk seeking to avoid losses, convex utility function







Loss aversion and Risk Aversion in Prospect Theory






- In PT the shape of the utility function is jointly determined by
  - risk aversion,
  - loss aversion (which measures one's sensitivity to loss compared to gain),
  - and nonlinear probability weighting (the individual tendency of overweighting small (large) probabilities and underweighting large (small) probabilities).











- The MPL was designed to allows the researcher to estimate models that
  - nest both EU and PT
- Also MPL allows the results from the experiment to determine whether EU or PT better fits the data.





### Complex Method: Holt–Laury measure of risk aversion

MPL method.

| Option A                     | Option B                        | Option A | Option B |
|------------------------------|---------------------------------|----------|----------|
| 1/10 of \$2, 9/10 of \$1.60  | 1/10 of \$3.85, 9/10 of \$0.10  |          |          |
| 2/10 of \$2, 8/10 of \$1.60  | 2/10 of \$3.85, 8/10 of \$0.10  |          |          |
| 3/10 of \$2, 7/10 of \$1.60  | 3/10 of \$3.85, 7/10 of \$0.10  |          |          |
| 4/10 of \$2, 6/10 of \$1.60  | 4/10 of \$3.85, 6/10 of \$0.10  |          |          |
| 5/10 of \$2, 5/10 of \$1.60  | 5/10 of \$3.85, 5/10 of \$0.10  |          |          |
| 6/10 of \$2, 4/10 of \$1.60  | 6/10 of \$3.85, 4/10 of \$0.10  |          |          |
| 7/10 of \$2, 3/10 of \$1.60  | 7/10 of \$3.85, 3/10 of \$0.10  |          |          |
| 8/10 of \$2, 2/10 of \$1.60  | 8/10 of \$3.85, 2/10 of \$0.10  |          |          |
| 9/10 of \$2, 1/10 of \$1.60  | 9/10 of \$3.85, 1/10 of \$0.10  |          |          |
| 10/10 of \$2, 0/10 of \$1.60 | 10/10 of \$3.85, 0/10 of \$0.10 |          |          |

From Holt and Laury (2002).

- Participants are typically informed that one decision will be selected at random and the chosen gamble will be played for real.
- Subjects are then paid according to that outcome.

- Study relationship between
  - risk aversion and cognitive ability (Dohmen et al. 2010)





- Modified/Double Multiple Price List Method all 3 prospect theory parameters
  - concavity,
  - loss aversion,
  - and weighting function parameters.





### Modified MPLs

|                                        |                                     | Expected payoff  |
|----------------------------------------|-------------------------------------|------------------|
| Option A                               | Option B                            | difference (A-B) |
| Series 1                               |                                     |                  |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 68,000 and 9/10 of 5,000    |                  |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 75,000 and 9/10 of 5,000    |                  |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 83,000 and 9/10 of 5,000    |                  |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 93,000 and 9/10 of 5,000    |                  |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 106,000 and 9/10 of 5,000   |                  |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 125,000 and 9/10 of 5,000   |                  |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 150,000 and 9/10 of 5,000   |                  |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 185,000 and 9/10 of 5,000   | -4,00            |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 220,000 and 9/10 of 5,000   | -7,50            |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 300,000 and 9/10 of 5,000   | -15,50           |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 400,000 and 9/10 of 5,000   | -25,50           |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 600,000 and 9/10 of 5,000   | -45,50           |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 1,000,000 and 9/10 of 5,000 | -85,50           |
| 3/10 of 40,000 and 7/10 of 10,000      | 1/10 of 1,700,000 and 9/10 of 5,000 | -155,50          |
| Series 2                               |                                     | -                |
| 9/10 of 40,000 and 1/10 of 30,000      | 7/10 of 54,000 and 3/10 of 5,000    | -30              |
| 9/10 of 40,000 and 1/10 of 30,000      | 7/10 of 56,000 and 3/10 of 5,000    | -1.70            |
| 9/10 of 40,000 and 1/10 of 30,000      | 7/10 of 58,000 and 3/10 of 5,000    | -3,10            |
| 9/10 of 40,000 and 1/10 of 30,000      | 7/10 of 60,000 and 3/10 of 5,000    |                  |
| 9/10 of 40,000 and 1/10 of 30,000      | 7/10 of 62,000 and 3/10 of 5,000    |                  |
| 9/10 of 40,000 and 1/10 of 30,000      | 7/10 of 65,000 and 3/10 of 5,000    |                  |
| 9/10 of 40,000 and 1/10 of 30,000      | 7/10 of 68,000 and 3/10 of 5,000    |                  |
| 9/10 of 40.000 and 1/10 of 30.000      | 7/10 of 72,000 and 3/10 of 5,000    |                  |
| 9/10 of 40,000 and 1/10 of 30,000      | 7/10 of 77.000 and 3/10 of 5.000    |                  |
| 9/10 of 40,000 and 1/10 of 30,000      | 7/10 of 83,000 and 3/10 of 5,000    |                  |
| 9/10 of 40,000 and 1/10 of 30,000      | 7/10 of 90,000 and 3/10 of 5,000    |                  |
| 9/10 of 40.000 and 1/10 of 30.000      | 7/10 of 100.000 and 3/10 of 5.000   |                  |
| 9/10 of 40,000 and 1/10 of 30,000      | 7/10 of 110,000 and 3/10 of 5,000   |                  |
| 9/10 of 40,000 and 1/10 of 30,000      | 7/10 of 130,000 and 3/10 of 5,000   | ~                |
| Series 3                               | // io of 150,000 and 5/10 of 5,000  |                  |
| 5/10 of 25,000 and 5/10 of -4,000      | 5/10 of 30,000 and 5/10 of -21,000  | 6.00             |
| 5/10 of 4,000 and 5/10 of -4,000       | 5/10 of 30,000 and 5/10 of -21,000  |                  |
| 5/10  of  4,000  and  5/10  of  -4,000 | 5/10 of 30,000 and 5/10 of -21,000  |                  |
| 5/10  of  1,000  and  5/10  of  -4,000 | 5/10 of 30,000 and 5/10 of -16,000  |                  |
| 5/10 of 1,000 and 5/10 of -4,000       | 5/10 of 30,000 and 5/10 of -16,000  |                  |
| 5/10 of 1,000 and 5/10 of -8,000       | 5/10 of 30,000 and 5/10 of -16,000  |                  |
|                                        |                                     |                  |
| 5/10 of 1,000 and 5/10 of -8,000       | 5/10 of 30,000 and 5/10 of -11,000  | -13,00           |

Critics:

- Most subjects will fail to understand the procedure
  - reduces the reliability of estimates
- Some participants may make inconsistent decisions
  - Solved by imposing strict monotonicity and enforcing transitivity.
- No consensus about the application in other domain
- ➢ Applied to examine the preferences of Vietnamese villagers (Tanaka et al. 2010)





# **Empirical Application 1**

- Many researchers have applied the MPL to elicit risk preferences (Dohmen et al. 2011; Charness and Viceisza, 2011; Anderson and Mellor, 2009; Lonnqvist et al., 2011; Reynaud and Couture, 2012; Dave et al., 2010).
- Applied to sample population that include:
  - Students, Farmers, rural villagers and residents
- No study yet on consumer behaviour
  - area of food/health policy





# **Empirical Application 2**

- We study risk attitudes of consumers by
  - Analysing correlation between risk aversion and BMI
- We used the
  - cumulative prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992)
  - and the one-parameter form of Prelec's (1998) axiomatically derived weighting function





## **Estimating Prospect Theory Parameters**

• Under the PT, Utility function is modelled by

$$PT(x, y; p) = pv(x) + (1 - p)v(y); \quad x > y > 0 \text{ or } x < y < 0 \\ w(p)v(x) + w(p)v(y); \quad x < 0 < y$$

• Value Function:

$$v(x) = \begin{cases} x^{\sigma} & \text{for } x \ge 0\\ -\lambda(-x^{\sigma}) & \text{for } x < 0 \end{cases}$$

• Weighting function:

$$w(p) = exp[-(-\ln p)^{\gamma}]$$





### **Estimating Prospect Theory Parameters**

- Series 1 and series 2 were used to estimate
  - the curvature of the utility function ( $\sigma$ )
  - and the nonlinear probability weighting parameter ( $\gamma$ ) for each respondent
- Using  $\sigma$ ,  $\gamma$  estimated from above and the switching point of series 3,
- we estimated the loss aversion parameter ( $\lambda$ )





# **Preliminary Results 1**

- Average risk aversion parameter to be 0.5875,
  - Consumers are in general risk averse.
- The average loss aversion parameter is 3.67,
  - In general consumers are loss averse.
- Average of the probability weighting parameter is 0.69,
  - In general consumers have the tendency to overweight low probabilities.
- Since  $\sigma$  is not equal to 1 and  $\gamma$  is not equal to 1
  - We reject expected utility framework





# **Relating Risk Attitudes and BMI**

- Past studies suggest that
  - increase in risk aversion will lead to a decrease in BMI,
  - an increase in loss aversion will lead to an increase in individual's BMI.
- As such we postulate that risk aversion and loss aversion correlate with an individual's BMI.





# **Relating Risk Attitudes and BMI**

- We estimate linear regression model (with robust standard errors):
  - relate risk preference parameters to BMI and other socioeconomic characteristics
- $\sigma_i = \delta_0 + \delta_1 BMI_i + \delta_3 \gamma_i + \delta_4 gender_i + \delta_5 Age_i + \delta_6 mar_i + \delta_7 + prim_i + \delta_8 sec_i$ 
  - Mar implies the person is married
  - *prim* is 1 if the individual's highest level of education is primary,
  - *sec* is 1 if the individual's highest level of education is secondary education and 0 if otherwise.





## **Preliminary Results 2**

|                       | Obese persons are ersion                                                 |
|-----------------------|--------------------------------------------------------------------------|
| BMI                   | less risk averse     0.01*     are less loss averse     0.03             |
| Age                   | more risk averse -0.01** 0.06***                                         |
| Probability weighting | 0.05 -2.12                                                               |
| Married               | -0.05 0.79                                                               |
| Gender                | 0.08 -0.73                                                               |
| Primary education     | Secondary school leavers are less risk averse than university 0.09 -0.10 |
| Secondary education   | graduates 0.10** -0.85                                                   |
| Constant              | 0.50* 2.05                                                               |

\*,\*\*,\*\*\* respresent significant at 10%, 5%, 1%, respectively.





# **Preliminary Results 2**

- We performed a robustness check by
  - excluding all individuals who did not switch from A to B or chose option B throughout.

|     | •                                                                             | Risk A                                                              | Aversion                                                                                                          | Loss Avers                                                                                                                                                                                          | Increase in BMI increases loss                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|-------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | •                                                                             | re                                                                  | 0.01*                                                                                                             | -0.125**                                                                                                                                                                                            | aversion                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ris | risk averse                                                                   |                                                                     | -0.010***                                                                                                         | 0.042                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                                                                               |                                                                     | 0.049                                                                                                             | -0.733                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                                                                               |                                                                     | -0.045                                                                                                            | -0.088                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sec | Secondary school leavers<br>are less risk averse than<br>university graduates |                                                                     | 0.081                                                                                                             | -0.653                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| are |                                                                               |                                                                     | 0.094                                                                                                             | -0.673                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                                                                               |                                                                     | 0.096**                                                                                                           | 0.214                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                                                                               |                                                                     | 0.499*                                                                                                            | 4.327**                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | less<br>Old<br>risl                                                           | risk averse<br>Secondary school leaver<br>are less risk averse than | less risk averse<br>Older People are more<br>risk averse<br>Secondary school leavers<br>are less risk averse than | Iess risk averseRisk AversionOlder People are more<br>risk averse0.01*<br>-0.010***0.049-0.049-0.045-0.045Secondary school leavers<br>are less risk averse than<br>university graduates0.0940.096** | less risk averse         Risk Aversion         Loss Aversion           Older People are more risk averse         0.01*         -0.125**           -0.010***         0.042         0.042           -0.045         -0.733         -0.733           -0.045         -0.088         -0.653           Secondary school leavers are less risk averse than university graduates         0.094         -0.673           0.096**         0.214         -0.214 |

\*,\*\*,\*\*\* respresent significant at 10%, 5%, 1%, respectively.





### Thank you